
Navigating from ASReml-R
Version 3 to 4

User Transition Guide

D G Butler1, B J Gogel2, B R Cullis1 and R Thompson3

1National Institute for Applied Statistics and Research, Australia
School of Mathematics and Applied Statistics
University of Wollongong
2School of Agriculture, Food and Wine, University of Adelaide, Australia
3Centre for Mathematical and Computational Biology, and Department of Biomathematics and
Bioinformatics, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom

September 12, 2018

Navigating from ASReml-R Version 3 to 4

D G Butler, B J Gogel, B R Cullis and R Thompson

Published by

VSN International Ltd,
2 Amberside House,
Wood Lane,
Hemel Hempstead,
HP2 4TP UK.
email: info@asreml.co.uk

website: http://www.vsni.co.uk/

Copyright Notice

Copyright c© 2017, University of Wollongong & The University of Adelaide. All rights reserved.

Except as permitted under the Copyright Act 1968 (Commonwealth of Australia), no part of the
publication may be reproduced by any process, electronic or otherwise, without specific written
permission of the copyright owner. Neither may information be stored electronically in any form
whatever without such permission.

The correct bibliographical reference for this document is:

Butler, D. G., Gogel, B.G., Cullis, B.R. and Thompson, R. 2017. Navigating from ASReml-R
Version 3 to 4. VSN International Ltd, Hemel Hempstead, HP1 1ES, UK.

Author email addresses

dbutler@uow.edu.au
beverley.gogel@adelaide.edu.au
bcullis@uow.edu.au
robin.thompson@rothamsted.ac.uk

Preface

Developments in ASReml-R Version 4

There are a number of new developments in Version 4. They include a more sensible and consistent
nomenclature, a more unified framework for model specification and output objects, and extended
functionality. Specific enhancements include:

• Computationally efficient fitting of random regression models when there are more variables than
observations: motivated by the use of SNP marker data to explain genotypes.

• Fitting linear relationships among variance structure parameters.

• Computing functions of variance components and their approximate standard errors.

• Calculating information criteria.

• Easier, more consistent and more useful specification of direct sum structures for residual models.
These occur when data observations are partitioned into sections to which separate variance
structures are applied. For example, separate spatial structures and residual error variances
would typically be specified for each site in a multi-environment trial (MET) analysis.

• Simpler, more consistent specification and fitting of known variance matrices, including relation-
ship matrices, and allowance for singular matrices.

• Introduction of the own() variance model to allow the specification of a user-defined variance
structure.

• Extensions to generalized linear models including threshold models and bivariate models with
one variate having a normal distribution and the other variate distributed from an exponential
family distribution.

• Generating design matrices to allow use of derived model terms and functions.

• Introduction of functions to generate factors that either combine levels of a factor or use a subset
of levels to allow easier prediction of models.

A list of terms in Version 3 with their replacement terms in Version 4 is presented in Chapter 2.
Changes to the asreml() function with Version 4 are described in Chapter 3 which commences
with a brief overview of the theory underpinning linear mixed models followed by separate sections
covering arguments, the asreml object, screen output, methods and functions, and lists. The
features that are new with Version 4 are described in Chapter 4.

iii

Who should read this document?

This document is for existing users who wish to keep abreast of the developments with Version 4.
Users who are new to ASReml-R with this version are referred to the ASReml-R Reference Manual
Version 4. A suite of both introductory and more advanced vignettes will also be available at
http://asreml.org.

Companion documents

Two main documents currently partner this navigation document: the ASReml-R Reference Manual
Version 4 which is an update of the Version 3 reference manual (Butler et al.; 2009) and the ASReml-
R package reference which is a pdf version of the ASReml-R help pages obtained in R by typing
help(asreml). Both documents are available at http://asreml.org under Resources > ASReml

docs and on the VSN International website https://www.vsni.co.uk.

http://asreml.org
http://asreml.org
https://www.vsni.co.uk

Contents

Preface iii

List of Tables vi

1 Getting started 1

1.1 ASReml-R Version 4.1 . 1

1.2 Installation and loading . 1

1.3 The asreml license . 1

2 What’s been replaced in ASReml-R Version 4 2

3 What’s changed in ASReml-R Version 4 4

3.1 Specification of the linear mixed model . 4

3.1.1 rcov becomes residual . 5

3.1.2 Switching between the gamma and sigma parameterization 5

3.2 asreml() arguments . 7

3.3 The asreml object . 9

3.4 Screen output . 9

3.5 Mixed model functions . 9

3.6 Methods and functions . 9

3.7 Lists . 11

4 What’s new in ASReml-R Version 4 12

4.1 asreml() arguments . 12

4.2 Mixed model functions . 18

4.3 Methods and functions . 23

Bibliography 26

v

List of Tables

2.1 List of terms (arguments, functions, objects, methods) in Version 3 with their status,
action, replacement term and reason for replacement in Version 4 2

vi

1 Getting started

1.1 ASReml-R Version 4.1

The package is named asreml and can be installed along side Version 3 (V3), although the root
function remains asreml() so that both versions cannot be loaded into an R session concurrently.

1.2 Installation and loading

Please refer to the VSN International website https://www.vsni.co.uk for information on instal-
lation and loading.

1.3 The asreml license

Please refer to the VSN International website https://www.vsni.co.uk for information on the
ASReml-R license.

1

https://www.vsni.co.uk
https://www.vsni.co.uk

2 What’s been replaced in ASReml-R Ver-
sion 4

As ASReml-R has developed it has become apparent that some terms can be named more appropri-
ately, the naming of others can be simplified and in some cases the terms can be grouped together.
Table 2.1 is a list of terms in Version 3 that have been removed, deprecated or deleted, with their
replacement and action in Version 4. Reasons for the change(s) are also given.

Table 2.1: List of terms (arguments, functions, objects, methods) in Version 3 with their status,
action, replacement term and reason for replacement in Version 4

terms in
Release 3

status in
Release 4

action in
Release 4

replacement in
Release 4

reasons for change/notes

asreml() arguments

as.multivariate removed terminates call asmv more succinct argument name
constraints removed terminates call vcc, vcm, 4.1 extended functionality
control removed terminates call use

asreml.options, 3.6
sensible grouping of job control and
less frequently used options

dump.model removed terminates call obsolete
gammas.table removed terminates call use vparameters.table more appropriate name
ginverse removed terminates call use vm(), 4.2 more unified framework for specifi-

cation of special variance models
maxiter deprecated honoured maxit can be set in asreml.options

model removed terminates call obsolete
na.method.X removed terminates call use na.action, 3.2 more unified framework for related

arguments
na.method.Y removed terminates call use na.action, 3.2
rcov removed terminates call residual, 3.1.1 more appropriate name
asreml.argument removed terminates call asr argument, 3.2 prefix asreml. replaced by asr

to simplify name and avoid con-
fusion, eg. GLM family functions,
argument = gaussian, Gamma,
inverse.gaussian, binomial,
multinomial, negative.binomial,
poisson

predictpoints deleted terminates call design.points, 3.2 more appropriate name
pwrpoints deleted terminates call pwr.points, 3.2 more appropriate name
splinepoints deleted terminates call knot.points, 3.2 more appropriate name
splinescale deleted terminates call spline.scale, 3.6 more appropriate name

2

2 What’s been replaced in ASReml-R Version 4

List of terms (arguments, functions, objects, methods) in Version 3, their status and actions in
Version 4 with their replacement terms and reasons for replacement in Version 4

terms in
Release 3

status in
Release 4

action in
Release 4

replacement in
Release 4

reasons for change/notes

Mixed model functions

at() in rcov or
residual

removed terminates call use dsum, 4.2 avoid inconsistent use of at()

giv removed R error will be
generated

use vm(), 4.2 more unified framework for specifi-
cation of special variance models

ped removed R error will be
generated

use vm(), 4.2 more unified framework for specifi-
cation of special variance models

The asreml object

family removed reports NULL family sensible inclusion in the model
frame

gammas removed reports NULL vparameters more appropriate name
gammas.type removed reports NULL vparameters.type more appropriate name
gammas.con removed reports NULL vparameters.con more appropriate name
monitor removed reports NULL trace logical companion name to the

tr() method
fixed.formula removed reports NULL use formulae, 3.7 a list with components fixed,

random, sparse and residual;
more unified framework for related
components of the asreml object

random.formula removed reports NULL use formulae, 3.7 more unified framework for related
components of the asreml object

sparse.formula removed reports NULL use formulae, 3.7 more unified framework for related
components of the asreml object

Methods or functions

asreml.Ainverse() removed R error will be
generated

ainverse(), 3.6 more appropriate function name

asreml.control() removed R error will be
generated

asreml.options, 3.6 now a function that groups job con-
trol and less frequently used op-
tions

asreml.variogram() removed R error will be
generated

use asr varioGram, 3.6 renamed to avoid conflict with sim-
ilar naming in other R packages

variogram() removed R error will be
generated

varioGram(), 3.6 renamed to avoid conflict with sim-
ilar naming in other R packages

variogram.asreml() removed R error will be
generated

varioGram.asreml(), 3.6 renamed to avoid conflict with sim-
ilar naming in other R packages

3

3 What’s changed in ASReml-R Version
4

In this chapter we describe changes to the asreml() function with Version 4. To provide the theoret-
ical base and facilitate an understanding of some of the terminology used in describing changed/new
features, we commence with an algebraic outline of the linear mixed models framework.

3.1 Specification of the linear mixed model

If y denotes the vector of observations, the general linear mixed model fitted by ASReml-R can be
written as

y = Xτ +Zu+ e

where τ is a vector of fixed effects, X is the design matrix that associates observations with the
appropriate combination of fixed effects, u is a vector of random effects, Z is the design matrix
that associates observations with the appropriate combination of random effects and e is the vector
of residual errors.

ASReml-R assumes the vectors u and e are uncorrelated with each other and have variance matrices
var (u) = G(σg) and var (e) = Rv(σr) that are functions of variance parameters σg and σr. The
variance matrix for y is then of the form

var (y) = ZG(σg)Z
ᵀ

+Rv(σr)

which we will refer to as the sigma parameterization of the G and R variance structures, and
the individual variance structure parameters in σg and σr will be referred to as sigmas. Other
parameterizations are possible and are sometimes useful. Motivated by mixed models when Rv(σr)
can be written as a scaled correlation matrix Rv(σr) = σ2

eRc(γr), we can then write G(σg) =
σ2eG(γg) and var (y) = σ2e(ZG(γg)Z

ᵀ
+ Rc(γr)). We call this the gamma parameterization and

the individual variance structure parameters in γg and γr will be referred to as gammas. Variance
parameters in σg, for example, σgi are re-parameterized as variance ratios γgi = σgi/σ

2
e. Correlation

parameters are the next most common type of variance parameter in G and Rc and then γgi =
σgi and γri = σri. It is usually easier to suggest initial values of the parameters for the gamma
parameterization, that is, for the gammas, and no initial value for the scaling parameter σ2

e is
needed.

4

3.1 Specification of the linear mixed model

3.1.1 rcov becomes residual

Perhaps one of the most notable changes (for existing users) from Version 3 to 4 is the change of
the argument name for specifying the variance structure for the residual error term from rcov to
residual. The default variance structure for data comprising a single section is still id(units).
However, the special function dsum is now used to specify a direct sum structure for data that is
partitioned into sections, for example, in multi-environment trial (MET) analysis, see Section 4.2.

3.1.2 Switching between the gamma and sigma parameterization

For single section models when the residual model can be expressed as a scaled residual matrix,
ASReml-R offers the option of fitting parameters using either the sigma parameterization (with
sigma parameters, see Section 3.1) or the gamma parameterization (with gamma parameters).
Specifying the residual model as a variance structure (or with dsum for multi-section models, see
end of section) forces ASReml-R to use the sigma parameterization. For example:

residual = ~idv(units)

residual = ~ar1v(Column):ar1(Row)

residual = ~us(Trait):units

would all use the sigma parameterization for model fitting. The following is the likelihood con-
vergence and table of variance parameter estimates for the RCB example when an IDV variance
structure is specified for the residual model:

rcb.asr <- asreml(fixed = yield~1 + Variety, random = ~ idv(Block),

residual = ~idv(units), data = rcb.dat)

Model fitted using the sigma parameterization.

ASReml 4.1.0 Fri Feb 2 09:36:56 2018

LogLik Sigma2 DF wall cpu

1 -28.7733 1.0 96 09:36:56 0.0

2 2.7153 1.0 96 09:36:56 0.0

3 35.8161 1.0 96 09:36:56 0.0

4 55.9947 1.0 96 09:36:56 0.0

5 64.0512 1.0 96 09:36:56 0.0

6 65.0829 1.0 96 09:36:56 0.0

7 65.1126 1.0 96 09:36:56 0.0

8 65.1127 1.0 96 09:36:56 0.0

> summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715427 0.068195046 0.9847383 P 0

units!R 1.00000000 NA NA F 0

units!units 0.05014295 0.007314089 6.8556664 P 0

Note the overall scale parameter units(R) is fixed at 1.0 and there is an estimated units variance.
For both correlation (gamma parameterization) and variance (sigma parameterization) models for
the residual, ASReml-R automatically includes an overall scale parameter. When a variance model
(with associated variance parameter) is specified, the overall scale parameter is fixed at 1.0 to avoid
overparameterization. This is reflected by the constraint on units(R) in the summary table.

5

3.1 Specification of the linear mixed model

Using gammaPar=TRUE in asreml.options()

For single section models where the residual formula specifies a variance model with a single pa-
rameter, the default action to use the sigma parameterization can be switched to the gamma
parameterization by setting asreml.options(gammaPar=TRUE):

asreml.options(gammaPar = TRUE)

rcb.asr <- asreml(fixed = yield~1 + Variety, random = ~ idv(Block),

+ residual = ~idv(units), data = rcb.dat)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Fri Feb 2 09:43:13 2018

LogLik Sigma2 DF wall cpu

1 58.2386 0.0608567 96 09:43:13 0.0

2 60.4027 0.0578118 96 09:43:13 0.0

3 62.6539 0.0546469 96 09:43:13 0.0

4 64.1290 0.0524343 96 09:43:13 0.0

5 64.8815 0.0510398 96 09:43:13 0.0

6 65.0836 0.0504189 96 09:43:13 0.0

7 65.1117 0.0501896 96 09:43:13 0.0

8 65.1127 0.0501448 96 09:43:13 0.0

Note the message to the screen indicating that the gamma parameterization has been used.

The reported variance parameters

By default, the sigma parameterization is used for reporting parameters:

summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715656 0.06802034 0.9873012 P 0.2

units(R) 0.05014482 0.00731451 6.8555269 P 0.0

Variance ratios estimated using the gamma parameterization can be reported by setting the param

argument of summary.asreml() to "gamma":

summary(rcb.asr, param = "gamma")$varcomp

gamma component std.error z.ratio bound %ch

Block!Block 1.339252 0.06715656 0.06802034 0.9873012 P 0.2

units(R) 1.000000 0.05014482 0.00731451 6.8555269 P 0.0

It can sometimes be advantageous to switch to the gamma parameterization in terms of providing
more appropriate initial (starting) values as can be seen by comparison of the log-likelihoods in the
first iteration. We can see that for the simple RCB example the REML log-likelihood is the same
for the two fits (sigma then gamma parameterization) and the REML estimates of the two variance
parameters are also identical.

The gamma parameterization by default

To ensure upward compatibility with previous releases, ASReml-R also uses the gamma parameter-
ization for model fitting by default if either no residual formula is specified or the residual formula
specifies a correlation structure. For example:

6

3.2 asreml() arguments

residual = ~id(units)

residual = ~ar1(Column):ar1(Row)

residual = ~id(units):cor(trait)

would all use the gamma parameterisation. The following is the likelihood convergence and default
table of variance parameter estimates when an ID variance structure is specified for the residual
model:

rcb.asr <- asreml(fixed = yield~1 + Variety, random = ~ idv(Block),

residual = ~id(units), data = rcb.dat)

Model fitted using the gamma parameterization.

ASReml 4.1.0 Fri Feb 2 09:45:55 2018

LogLik Sigma2 DF wall cpu

1 58.2386 0.0608567 96 09:45:55 0.0

2 60.4027 0.0578118 96 09:45:55 0.0

3 62.6539 0.0546469 96 09:45:55 0.0

4 64.1290 0.0524343 96 09:45:55 0.0

5 64.8815 0.0510398 96 09:45:55 0.0

6 65.0836 0.0504189 96 09:45:55 0.0

7 65.1117 0.0501896 96 09:45:55 0.0

8 65.1127 0.0501448 96 09:45:55 0.0

> summary(rcb.asr)$varcomp

component std.error z.ratio bound %ch

Block!Block 0.06715656 0.068019908 0.9873075 P 0.2

units!R 0.05014483 0.007314511 6.8555266 P 0.0

Multi-section models using dsum

In the case of multi-section models where the variance structure for the residual error term is a
direct sum (specified using dsum) the sigma parameterization is used, see Section 4.2 for more
detail.

3.2 asreml() arguments

family The family argument can optionally accept a list of family functions for bi-variate GLM
models.

GLM families The GLM family functions (gaussian, binomial, etc) are now prefixed by "asr " in-
stead of the Version 3 style "asreml." prefix. The complete set of families includes gaussian,
Gamma, inverse.gaussian, binomial, multinomial, negative.binomial, poisson. A bi-
variate example is:

binnor.asr <- asreml(cbind(score5, norm) ~ trait:Sex + trait:Grp,

random = ~ us(trait):Sire,

family=list(asr_binomial(),asr_gaussian()),

data=binnor, maxit=20)

A multinomial example is discussed in Section 4.1.

knot.points User supplied knot points for spline terms. knot.points in Version 4 replaces

7

3.2 asreml() arguments

splinepoints in Version 3. For example:

asreml.options(predictpoints = list(x = seq(118,1582,by=1)))

orange.asr <- asreml(circ $$ x, random = spl(x),

knot.points = list(x = c(118,484,664,1004,1231,1372,1582)), data = orange, subset = Tree==1)

model.frame The model.frame argument optionally accepts a text string naming an RDS file (type
?readRDS in R for information on RDS files) in which to store the asreml model frame (data
+ model attributes) outside the asreml object. The motivation is to reduce the size of the
asreml object in large examples. The data as used in the fit is needed for some post fitting
methods like resid and plot, but automatically including it in the object adds to the size
of the object and the .RData file, particularly if the data alone is hundreds or thousands
of megabytes. The RDS file is a convenient way to keep the data (model) frame and all its
properties outside the .RData workspace. As an example, in

oats.asr <- asreml(yield ~ variety*nitrogen,....,data=oats, model.frame="oats.RDS")

oats.RDS contains the data used in the analysis (i.e. after any model functions etc. have
had their way) as a data.table object with numerous internal attributes. The model.frame

component of oats.asr then just contains the string oats.RDS, which then allows plot() to
find it.

mbf Component name cov replaces dataFrame to identify the covariate dataframe. For example:

naf.asr <- asreml(yield ~ type,

random = ~ mbf(A)+Variety, data=naf,

residual = ~ ar1(column):ar1(row),

mbf = list(A=list(key=c("Variety","V1"),cov="naf31H")))

fits a function associated with factor A defined in dataframe naf31H.

na.action Specifies the action to be taken when missing values are encountered in the response or
explanatory variables. In the call, na.action = na.method(). The arguments to na.method()
are y (the response) = "include", "omit" or "fail" and x (explanatory variables) = "fail",
"include" or "omit". The default action is to include (and estimate) missing values in the
response (y = "include") and to raise an error if there are missing values in the explanatory
variables (x = "fail").

pwr.points User supplied distances for one-dimensional power models (replaces pwrpoints). For
example:

asreml(y ~ 1, random = ~ expv(time) + ..., pwr.points=list(time=c(2,4,7,12))

If not given, expv() gets the points from unique(data[[time]]).

workspace Memory settings (workspace and pworkspace) are now in the options list, but can
also be specified in the asreml() function call. These may be set with text strings specifying
the memory units, for example "3gb" requests 3 gigabytes of space. Valid units are "kb",
"mb" and "gb" which are not case sensitive, for example, "Kb", "kB", "KB" and "kb" refer

8

3.6 Methods and functions

identically to kilobytes.

Note that 100e6 in Version 3 is 8*100e6 bytes which is approximately workspace = "800mb"

in Version 4. Note that, no suffix still gives the Version 3 workspace calculation in double
precision words (= 8 bytes).

3.3 The asreml object

Cfixed Returned as a dspMatrix class matrix. A dspMatrix class object is a dense symmetric
matrix provided by the Matrix sparse matrix package in R. Only n(n + 1)/2 elements are
stored but are visible to the user through normal subscripting. The Matrix package is installed
by default in R.

ai Returned as a dspMatrix class matrix. See Cfixed for information on dspMatrix class objects.

3.4 Screen output

ASReml-R no longer prints LogLikelihood Converged and LogLikelihood not converged mes-
sages to the screen at the end of a run. All warnings and failures are reported. A return to the
prompt with no warnings/failures indicates the model has converged.

3.5 Mixed model functions

str() The function to specify a general variance structure spanning consecutive model terms has
been updated. In particular, the specification of variance models that generate new model
factors with a modified set of levels (fa(), ped() and ide() in Version 3, fa(), rr(), vm() and
ide() in Version 4) has changed. See Section 4.3.7 of the ASReml-R Reference Manual Version
4 for details.

3.6 Methods and functions

asreml.options() Less frequently used settings are now set per session outside the asreml()

function call in an options environment by a call to asreml.options(). Settings that were
formerly set in asreml.control but are used more often, for example, mbf and group, are
now set in the call to asreml(). With no arguments, asreml.options() returns a list of
settings that can be altered; arguments are a sequence of name=value pairs. The full list
of options is given in the ASReml-R package reference available at http://asreml.org un-
der Resources > ASReml docs and by typing help(asreml) in R. The options that have
changed are as follows:

ai.penalty The algorithm for updating loadings in factor analytic models has been im-
proved. The motivation for change was that the original update procedure sometimes pro-
duced unreasonable updates, or otherwise came near to convergence and then drifted away.
The present procedure is to modify the average information matrix by increasing the diagonal
elements pertaining to loadings by a percentage, p. The default is to start with p = 10% and
reduce it by 1 or 2% each iteration down to 1%. If the starting values are poor, 10% may
not be a sufficient initial retardation. If it appears the updates are unreasonable, ASReml-R

9

http://asreml.org

3.6 Methods and functions

will increase the value of p by 10% and then continue. The initial value of p is set in the
ai.penalty component of asreml.options() list. After the penalty has reduced to 1%, it
is further reduced to 0.2%. The value can be set to 0 if desired.

asreml.options(ai.penalty = 10) #the default

asreml.options(ai.penalty = 0) #no modification

design The design argument to asreml.options takes values TRUE or FALSE (default). If
TRUE, the design matrix is returned in component design of the asreml object. The design

option might be used, for example, in generating design matrices that can then be used in
post-processing eg. to check design matrices.

font.scale Scales axis text and labels (relative to the ASReml-R default settings) in the
graphs generated by plot.asreml(). The default is font.scale=1.0.

spline.scale Replaces splinescale which was formerly set in asreml.control.

trace If TRUE then a component called trace is added to the returned asreml object con-
taining information regarding the convergence of the current fit.

ainverse() Renamed from asreml.Ainverse(). The returned object is now a three-column ma-
trix of class ginv with attributes rowNames, inBreeding, geneticGroups and logdet (pre-
viously a list of these objects in Version 3).

na.method() See na.action, Section 3.2.

plot.asreml() Now uses ggplot2 graphics.

predict.asreml() The following are changes to predict.asreml() with Version 4:

• a new design.points argument, formerly known as predictpoints in asreml.control()

• field name standard.error in the predictions data frame changed to std.error

• covariances and standard errors returned as dspMatrix objects, see Cfixed above for
information on dspMatrix class objects

• predict() just returns the predictions component of the asreml object.

summary.asreml() Variance parameters are reported using the sigma parameterisation by de-
fault. Use param="gamma" to also report gamma parameters. The following are changes to
summary.asreml() with Version 4:

• the nice argument to summary.asreml() has been renamed vparameters and the nice

component of the summary object is now the vparameters component.

• the all argument to summary.asreml() has been renamed coef. Setting coef=TRUE

allows the coefficients for the fixed, random and sparse model terms and their standard
errors to be accessed through the coef.fixed, coef.random and coef.sparse components,
respectively.

• the constraint field in the varcomp component has been renamed bound.

10

3.7 Lists

For comparing nested models we recommend the REML likelihood ratio test, see Section 2.4.1
of the ASReml-R Reference Manual Version 4. The Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC) are also defined in Section 2.4.1 of the reference
manual. The AIC and BIC are provided for the convenience of users but without any formal
recommendation for their use. The number of parameters includes the number of linear
parameters estimated and the number of variance structure parameters estimated, excluding
variance parameters fixed at a boundary during the estimation procedure. The value used in
calculating AIC and BIC is reported, giving the opportunity for the user to verify/modify this
number.

All of these statistics are based on the REML log-likelihood statistics and are only valid if the
fixed effects model is unchanged between runs and is fitted in the same order (ie. the same
effects are aliased in the case where the model is over-parameterized).

variogram() Renamed to varioGram() to avoid conflict with similar naming in other S pack-
ages; method renamed to varioGram.asreml() and the variogram constructor renamed to
asr varioGram().

3.7 Lists

formulae A list with elements the fixed, random, sparse and residual model formulae specified in
the call to asreml().

11

4 What’s new in ASReml-R Version 4

4.1 asreml() arguments

ai.loadings This option allows further control of the AI updates of loadings in extended factor-
analytic (fa(,k)) models. After ASReml-R calculates updates for variance parameters, it checks
whether the updates are reasonable and sometimes reduces them over and above any step.size
shrinkage. The extra shrinkage has two levels. Loadings that change sign are restricted to
doubling in magnitude, and if the average change in magnitude of loadings is greater than
10-fold, they are all shrunk. Further, when ai.loadings=n is specified (default n = −1 specifies
no action) and the user has not imposed identifiability constraints, then ASReml-R imposes
them using ai.rotate=TRUE and it also prevents AI updates of some loadings during the first
n iterations. For k > 1 factors, only the last factor is estimated (conditional on the earlier
ones) in the first k− 1 iterations. Then pairs, including the last, are estimated until iteration
n.

asr multinomial The multinomial family is new in Version 4 and allows the fitting of multiple
threshold models to polytomous ordinal data with k categories with t = k − 1 thresholds,
assuming a multinomial distribution. Typically, the response variables are a set of k variables
containing counts ri (i = 1 . . . k) in the k categories. The response can either be a matrix
of counts with the response categories as columns, with an additional column for the total
number of cases in each row, or in univariate style with the response as a factor. The total,
n =

∑k
i=1 ri say, can be given using the argument total=n. If the response is a matrix then

the data is grouped and if total=NULL, the total counts are calculated from the category
columns. If the response is a vector then the data are un-grouped and the total is not
relevant. In this case the response must be a factor (this is the only case where ASReml-R
allows a response variable to be a factor) and the response factor must have at least 2 levels.

The model is fitted by transforming the counts to proportions yi = ri/n, (i = 1 . . . k) and
forming cumulative proportions Yi =

∑i
j=1 yj and modelling E(Yi) with µi and νi = h(µi)

with νi the linear predictor for the ith variable and h() the link function. Typically the linear
predictors have two parts, one the same for all the variables associated with one record and a
second being a threshold differing for each variable. These thresholds can be specified using
the trait variable. As an example, the data cheese contains counts on four cheeses in 9
categories. We wish to model the data using a logistic distribution (the default distribution)
with 8 (= 9−1) thresholds to predict the probabilities in each category and to allow different
effects for each cheese.

12

4.1 asreml() arguments

A specification of this multinomial model in vectorised form is:

ch4.asr <- asreml(Taste ~ trait + Cheese,

residual = ~ units:mthr(trait),

family=asr_multinomial(),data=cheese.cat)

In grouped form we have:

total not given

ch1.asr <- asreml(cbind(cat1,cat2,cat3,cat4,cat5,cat6,cat7,cat8,cat9) ~ trait + Cheese,

family=asr_multinomial(),data=cheese)

total in "tot"

ch2.asr <- asreml(cbind(cat1,cat2,cat3,cat4,cat5,cat6,cat7,cat8,cat9) ~ trait + Cheese,

family=asr_multinomial(total=tot),data=cheese)

combine Form a new factor from an existing factor by merging a subset of its levels, see also gpf()

(4.2). For example, for a factor Site with three levels Site1, Site2 and Site3, the following
code within an asreml() function call would create a new 2 level factor C with level 1 being
sites 1 and 3 and level 2 being site 2:

combine=list(C=Levels(Site, c(’1’,’2’,’1’)))

This subset factor C can be incorporated into model formulae using gpf, eg. gpf(C) or
idv(gpf(C)).

dense ASReml-R uses linked-list matrix methods for the sparse equations, that is, equations for
terms in the random and sparse formulae. However, genetic relationship matrices, for exam-
ple, are typically quite large (order several thousand) and dense, and it can be more efficient
to process such terms as dense. The dense formula component of the asreml.options()

list can be used to include terms in the random formula in the dense set of equations for
processing. The dense formula can also be given directly as an argument to asreml(). For
example:

asreml.options(dense = ~ vm(clonefv,K))

nassau.asr <- asreml(ht6 ~ CultureID/Rep,

random = ~ vm(clonefv,K) + ide(clonefv) + Rep:IncBlock ...)

or equivalently:

nassau.asr <- asreml(ht6 ~ CultureID/Rep,

random = ~ vm(clonefv,K) + ide(clonefv) + Rep:IncBlock,

dense = ~ vm(clonefv,K))

would include the equations for clonefv in the dense set for processing.

family GLM families include the asr multinomial() function.

gammaPar Allows the user to change between the sigma and gamma parameterizations for model
fitting. If gammaPar=FALSE within asreml.options(), the parameterization used depends
on the specification of the model for the residual error term. The sigma parameterization

13

4.1 asreml() arguments

is used if the residual model is specified as a variance matrix or with dsum. The gamma
parameterization is used if the residual model is specified as a correlation matrix. There
are sometimes advantages in using a gamma parameterization in terms of providing appro-
priate initial values. If the residual model has only one variance parameter then setting
gammaPar=TRUE within asreml.options() switches from the sigma parameterization to the
gamma parameterization in fitting the mixed model.

rotate.fa Constraints are required in Γ for k > 1 for identifiability in fa(,k) models. These are
automatically set unless the user ensures identifiability by constraining one parameter in the
second column, two in the third column, etc. With rotate.fa=FALSE (the default), ASReml-R
fixes the j = 1, ..., i−1 loadings for the i-th factor (2 ≤ i ≤ k) to zero and their corresponding
boundary constraints to F. The total number of constraints is k(k − 1)/2.

An alternative set of constraints can be set if identifiability constraints have not been imposed,
using rotate.fa=TRUE. The factors are rotated to orthogonality, in each iteration, and k(k −
1)/2 constraints are imposed on the loadings depending on the values in this orthogonalized
Γ. This option is hypothesized to have better convergence properties but we do not have
sufficient evidence yet to make a definite recommendation on its use. We note that extra
constraints might be needed to ensure identifiability if the number of parameters in a k factor
analytic model, ω(1 + k)− k(k− 1)/2, is greater than the ω(ω+ 1)/2 parameters that can be
estimated in Σ.

prune Form a new factor from an existing factor by selecting a subset of its levels, see also sbs()

(4.2). For example, for the same factor as in combine, the following code within an asreml()

function call would instruct ASReml-R to form factors A and B with only those levels in the
specified subset of Site:

prune=list(A=Subset(Site, c(2,3)), B=Subset(Site,c("Site1","Site3")))

This example demonstrates the two ways of specifying the required levels of site, ie. by level
number for factor A and by the site name for factor B. The factors A and B can be used in
the model term using sbs, for example, sbs(A) to fit a fixed effect or idv(sbs(B)) to fit a
variance component.

vcc Is the command that allows users the functionality of the constraints argument in Version
3.

Equality and multiplicative relationships among variance parameters are defined by supplying
a two-column numeric matrix with a dimnames attribute to vcc. The first column defines
the grouping of variance parameters by assigning the same number to each parameter within
a group, and the second column contains the scaling coefficients. The dimnames()[[1]] at-
tribute must match the component names in the asreml parameter vector (see start.values).
The parameters in a group are scaled relative to the first parameter in that group so that the
scaling of the first parameter in each group is one.

For example, consider a MET with two trials with separate error variances (σ21 and σ22) and the
spatial row (ρr1 and ρr2) and column (ρc1 and ρc2) parameters for a separable autoregressive
spatial model of order 1 for each trial. Say we wish to constrain these error models to be

14

4.1 asreml() arguments

equal so that σ21 = σ22, ρr1 = ρr2 and ρc1 = ρc2 . Then the appropriate vcc matrix with row
attributes is

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 1
2 1
3 1
1 1
2 1
3 1



Alternatively, if we require σ22 = 2σ21, the vcc matrix is

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 1
2 1
3 1
1 2
2 1
3 1



vcm Allows the user to define equality and multiplicative relationships among variance parameters.
The default NULL means no relationship is fitted.

The vcm argument to asreml() allows the user to define equality and multiplicative relation-
ships among variance parameters. The default NULL means no relationship is fitted.

The user may wish to define relationships between particular variance parameters. For ex-
ample, consider an experiment in which two or more separate trials are sown adjacent to one
another at the same trial site, with trials sharing a common plot boundary. In this case it
might be sensible to fit the same spatial parameters and error variances for each trial. In
other situations it can be sensible to define the same variance structure over several model
terms. ASReml-R Version 3 catered for equality and multiplicative relationships among vari-
ance parameters (this facility is available in Version 4 through vcc, see above). In ASReml-R
Version 4 linear relationships among variance structure parameters can be defined through a
simple linear model and by supplying a design matrix for a set of parameters.

Let κ be the r-vector of original variance parameters (for either the sigma or gamma param-
eterisation) from which we wish to specify linear relationships of the form

κ = Mκn

where κn is the c-vector of parameters in the new set. In the simple case where the r
parameters are constrained to be equal, c = 1, the r original parameters are all equal to the
one new parameter and M will contain a column of ones. Consider again the MET with two
trials in which we wish to constrain the trial error variances and the spatial row and column
parameters for a separable autoregressive spatial model of order 1 for each trial, to be equal.
In this case the relationship between the original and new parameter sets is κ = Mκn where
κ is the 6 × 1 vector [σ2

1
, ρr1 , ρc1 , σ

2
2
, ρr2 , ρc2]ᵀ, κn is a 3 × 1 vector [σ2e , ρr, ρc]

ᵀ and M ,

15

4.1 asreml() arguments

with row attributes, is the 6 × 3 matrix

Trial 1!R

Trial 1!Row!cor

Trial 1!Column!cor

Trial 2!R

Trial 2!Row!cor

Trial 2!Column!cor



1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1



Generating M

A default data frame vparameters.table is generated by setting the start.values argument to
TRUE in the call to asreml(). This data frame contains elements Component which contains
the names of the variance parameters, Value which contains the default initial values and
Constraint which contains the default constraint code. The Component element can be used
to generate M .

By way of example, consider a model containing a first order interaction term (A : B, say)
where the outer factor (A) is of order 7 and we wish to model it with an unstructured variance
matrix with some parameters constrained. If the constraints are
vr,c = v3,c (r = 4, 5, 6, 7; c = 1, 2), vr,r = v3,3 (r = 4, 5, 6, 7) and vr,c = v4,3 = 0 (r =
5, 6, 7; c = 3, 4, 5, 6; r > c), this gives rise to a vector of 7 parameters
κn = (v1,1, v2,1, v2,2, v3,1, v3,2, v3,3, v4,2)

ᵀ and a variance matrix:

v1,1
v2,1 v2,2
v3,1 v3,2 v3,3
v3,1 v3,2 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v4,3 v3,3
v3,1 v3,2 v4,3 v4,3 v4,3 v4,3 v3,3

That is, there are only 7 distinct parameters from the original 28 and one of these is to be
fixed at zero. Furthermore, suppose that none of the remaining variance parameters from
other terms in the model are to be subject to any constraints.

The following call

> model.gam <- asreml(..., random = us(A):id(B), start.values = T, ...)

generates a data frame component of model.gam named vparameters.table, as described above.

If the 28 components of interest are the 47th to the 74th, the following code subsets
model.gam$vparameters.table and creates a factor in the reduced table that can be used to
construct M :

gam <- model.gam$vparameters.table[47:74,]

gam$fac <- factor(c(

16

4.1 asreml() arguments

1,

2,3,

4,5,6,

4,5,7,6,

4,5,7,7,6,

4,5,7,7,7,6,

4,5,7,7,7,7,6))

M <- model.matrix(~-1 + fac, data=gam)

dimnames(M)[[1]] <- row.names(model.gam$vparameters.table)[47:74]

attr(M,’assign’) <- NULL; attr(M,’contrasts’) <- NULL

ImportantM must have a dimnames attribute with the names of the original set of parameters
as its row names.

In this example, M would look like

parameter attribute κn 1 2 3 4 5 6 7

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

A:B!B 1!1

A:B!B 2!1

A:B!B 2!2

A:B!B 3!1

A:B!B 3!2

A:B!B 3!3

A:B!B 4!1

A:B!B 4!2

A:B!B 4!3

A:B!B 4!4

A:B!B 5!1

A:B!B 5!2

A:B!B 5!3

A:B!B 5!4

A:B!B 5!5

A:B!B 6!1

A:B!B 6!2

A:B!B 6!3

A:B!B 6!4

A:B!B 6!5

A:B!B 6!6

A:B!B 7!1

A:B!B 7!2

A:B!B 7!3

A:B!B 7!4

A:B!B 7!5

A:B!B 7!6

A:B!B 7!7

v1,1
v2,1
v2,2
v3,1
v3,2
v3,3
v4,3



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0



The final step before fitting the model is to fix the parameters corresponding to level 7 of
fac to zero. This is achieved by by setting the appropriate values in the Value field of gam

17

4.2 Mixed model functions

to zero and the corresponding boundary constraint codes in the Constraint field to F. During
the estimation procedure the new parameters, κn, use the numbering system of the original
parameters, κ, hence the 7 κn parameters are numbered from 47-53. So to fix v4,3, parameter
53 is fixed. The modified values and the matrix M are used through the G.param and vcm()
arguments to asreml(), that is

model.asr <- asreml(..., random = us(A):id(B), vcm(M), G.param = gam, ...)

This example has been set up to show how vcm() can be used. An equivalent method in this
case would be to fix the 10 parameters vr,c (r = 4, 5, 6, 7; c = 3, 4, 5, 6; numbers 55, 59, 60, 64,
65, 66, 70, 71, 72, 73) and set up a 15×3 matrix based on parameters vr,c (r = 3, 4, 5, 6, 7; c =
1, 2; numbers 50, 51, 53, 54, 57, 58, 62, 63, 68, 69) and vr,r (r = 3, 4, 5, 6, 7; numbers 52, 56,
61, 67, 74) in terms of v3,1, v3,2 and v3,3.

Warning: Beta-testing of Version 4 has indicated that if the modelled parameters κ = Mκn

need to be restrained, the variance parameters are not at their optimum values. Please ask
VSN International for further details on how to overcome this challenge.

4.2 Mixed model functions

C() Factor contrasts. In the following L is a contrast based on the 4 levels of a factor nitrogen:

L <- c(3,1,-1,-3)

The contrast would be defined by the term C(nitrogen, L) in the model call.

The length of the contrast vector (pre-defined as L in this case although c(3,1,-1,-3) could
replace L in the call) must be equal to the number of levels in the factor. Missing values in
the factor are excluded in forming the contrast.

dsum() Direct sum structures for the residual error term

The data observations are often partitioned into sections to which separate variance structures
are applied. For example, separate spatial structures and residual error variances would
typically be specified for each site in a multi-environment trial (MET) analysis.

It is conventional to use a variable in the data file to identify sections within the data. The
data will be sorted internally by ASReml-R (ie. the data file does not need to be ordered in
any particular way) and the variance structures for sections can then be specified using the
dsum function, for example:

residual = ~dsum(~id(units) | section)

for a simple analysis in which section is a column in the data file that codes the individual
sections. The dsum function (shorthand for direct sum) is new with Version 4 and performs
several different tasks:

18

4.2 Mixed model functions

– it tells ASReml-R that the variance structure for the residual error term is a direct sum
structure where different variance structures apply to the different levels of the sectioning
variable in the data.

If a model structure specified defines a residual matrix then a variance factor associated
with the appropriate sectioning level is added to the specified model to generate a variance
matrix.

– it prunes the levels for a section so that only the levels of factors defining the residual
variance structure for that section are used in forming that variance structure.

Variance model functions in dsum

Correlation models were used in direct sum structures for the residual error term in Version
3 which automatically added and estimated a scale parameter for each section. In Version
4 a variance model function can be specified for one argument of the dsum component for
each section. In this case the section variance is automatically fixed at 1.0 to avoid over-
parameterization. For each section, ASReml-R counts the number of dimensions (1 for a
single term, ≥ 2 for separable structures) for which variance models are specified and if the
count is > 1 the model is judged to be over-parameterized and an error is returned.

Specifying the model using dsum

Often sections relate to sites (or trials or experiments) in the case where several related trials
are analysed together. For example, consider a MET dataset comprising data for three sites,
each laid out in a row by column array coded by factors Row and Column in the dataset. To
model the residuals at each site by a separate scaled AR1×AR1 variance structure, we could
write:

residual = ~dsum(~ar1(Column):ar1(Row) | Site)

Alternatively, a scaled AR1×AR1 variance structure for sites 1 and 3, but a scaled ID×AR1
structure for site 2, could be coded as:

residual = ~dsum(~ar1(Column):ar1(Row) + id(Column):ar1(Row) | Site,

levels = list(c(1,3), c(2)))

or as

residual = ~dsum(~ar1(Column):ar1(Row) + id(Column):ar1(Row) | Site,

levels = list(c("Site1", "Site3"), c("Site2")))

where Site1, Site2 and Site3 are the three site labels. An alternative is to provide separate
dsum statements for the AR1×AR1 and ID×AR1 sections:

residual = ~dsum(~ar1(Column):ar1(Row) | Site, levels=c(1,3))

+ dsum(~id(Column):ar1(Row) | Site, levels=c(2))

Making use of variance model functions in dsum, other variants on this code are:

19

4.2 Mixed model functions

residual = ~dsum(~ar1v(Column):ar1(Row) + idv(Column):ar1(Row) | Site,

levels = list(c(1,3), c(2)))

and

residual = ~dsum(~ar1(Column):ar1v(Row) + id(Column):ar1(Row) | Site,

levels = list(c(1,3), c(2)))

For the former, the error variance would be fixed at 1.0 for all three sites to avoid overpa-
rameterization. For the latter, the error variances for sites 1 and 3 but not 2 would be fixed
at 1.0. An error would be returned for

residual = ~dsum(~ar1v(Column):ar1v(Row) + id(Column):ar1v(Row) | Site,

levels = list(c(1,3), c(2)))

Error: Residual model overparameterized - structure has 2 variance models

For each of these definitions, ASReml-R will determine the particular levels in Row and Column

for each site and hence the appropriate sizes of the AR1 and ID matrices, and variances
associated with the levels of Site will be added to correlation structures.

Important A correlation/variance structure needs to be specified for every level of the sec-
tioning factor, in which case

residual = ~dsum(~ar1(Column):ar1(Row) | Site, levels=c(1,3))

would fail as there is no variance structure specified for site 2.

Specifying variance structures using dimensions

Although less conventional, variance structures can also be specified using dimensions rather
than factor names. For example, consider a simple MET comprising three trials arranged in
rectangular arrays of dimension 12, 10 and 9 rows by 6, 8 and 18 ranges for trials 1, 2 and 3,
respectively. For data ordered rows within columns within trials (trials coded as Site in the
data frame), an AR1×AR1 variance structure for trials 1 and 3 and an IDV×AR1 structure
for trial 2, could be coded as:

residual = ~dsum(~ar1(6):ar1(12)| Site, levels=c(1)) + dsum(~ar1(8):ar1(10)| Site, levels=c(2))

+ dsum(~ar1(18):ar1(9)| Site, levels=c(3))

The outer argument to dsum

The outer argument to dsum has been introduced to enable modelling multiple independent
sections of correlated observations with a common variance structure and common parameters
within sections. The sections can be of different sizes. For example:

residual=~ dsum(~id(Range):ar1(Row)| Site,levels=c(1:2,7)) +

dsum(~id(Range):ar1(Row)| Site,levels=3:4, outer=T) +

dsum(~id(Range):ar1(Row)| Site,levels=5:6, outer=T),

20

4.2 Mixed model functions

would model separate error variance and spatial correlation parameters for levels 1, 2 and 7
of Site and the same error variance and spatial correlation parameters for levels 3 and 4 of
the factor Site and likewise for levels 5 and 6 of Site.

Two rules for defining the residual error term

The following two rules are not new to ASReml-R with Version 4 but are included here as a
reminder:

Rule 1 The number of effects in the residual term must be equal to the number of data units
included in the analysis.

Rule 2 Where a separable variance structure is specified for the residual error term, each
combination of levels of the single model terms specifying this structure must uniquely identify
one unit of the data. For example, in the spatial analysis of a trial comprising 4 replicates
of 24 varieties arranged as a rectangular array of dimension 4 rows by 24 columns (rows are
replicates), a, AR1 × AR1 variance structure for the residuals can be specified by the model
term ar1(column):ar1(row), where column and row are the appropriate columns in the data
file. However, the number of data units must be the product of the number of levels for row

and the number of levels for column; 96 in this case. If this is not the case, or if more than
one unit is associated with some row column combination, ASReml-R will return an error
message and it will not be possible to use ar1(column):ar1(row) for residual error. If there
are fewer than 96 units and each row-column combination present is associated with one unit,
then the data would need to be augmented by completing (padding out) the full rectangular
array allow an appropriate analysis.

These rules will always be satisfied for a single section of data defined either by default (ie.
with no residual variance structure specified) or in terms of the units factor. However, a
mismatch in both size and ordering is possible when either multiple sections are present (as
in MET analysis) or when non-identity variance model functions are used.

facv() an alternative form of the factor analytic model fa(). If the size of the matrix modelled is
much larger than the number of factors, the sparse or extended formulation fa() is usually
computationally preferable.

gpf() Used in conjunction with combine (see Section 4.1) to form a new factor from an existing
factor by grouping together levels, for example:

met.gpf <- asreml(yield ~ Site,

random= ~ Genotype + Genotype:Site + gpf(C):Row,

residual = ~ idv(units), data = met,

combine=list(C=Levels(Site, c(’1’,’2’,’1’))))

lvr() a linear variance model.

leg() Legendre polynomials. Search for legendre in the ASReml-R forum (http://www.vsni.
co.uk/forum/) for a discussion of legendre polynomials.

21

http://www.vsni.co.uk/forum/
http://www.vsni.co.uk/forum/

4.2 Mixed model functions

own() User defined variance models.

The own() variance model allows the specification of a user-defined variance structure. This
feature requires a user provided R function (the default is myowngdg()) that returns a list
containing the variance matrix and a full set of partial derivative matrices, one for each
parameter. Before each iteration, ASReml-R calls myowngdg() passing basic information on
the variance parameters given by the own() model term, and retrieves the returned list
containing the variance matrix and its derivatives.

We use the data set shf (an agricultural field experiment arranged in a rectangular grid of
plots) to illustrate the use of own(). my.ar1() is an example myowngdg function; it duplicates
the AR1 variance structure.

Ignoring the design factors, the following simple analysis models the residuals with separable
autoregressive processes in the Row and Column dimensions:

library(asreml)

shf.ar1 <- asreml(yield ~ Variety,

residual = ~ ar1(Row):ar1(Column), data=shf)

The following call (not run yet) replaces the intrinsic ASReml-R variance model ar1() with
the user-defined function my.ar1() for the Column factor:

shf.ar1 <- asreml(yield ~ Variety,

residual = ~ ar1(Row):own(Column, "my.ar1", 0.1, "R"), data=shf)

where the arguments to own() are:

Column The object in the data.
"my.ar1" The name of the user defined function as a character string.
0.1 A vector of initial parameter values.
"R" A character vector specifying the parameter type(s),

in this case "R" designates the single parameter as a correlation.

rr() A reduced rank variant of the factor analytic variance model function fa().

sbs() Used in conjunction with prune to form a new factor from an existing factor by selecting a
subset of its levels, see example for prune.

sfa() a scaled version of the factor analytic model fa().

vm() Known variance models. These may be genetic relationship matrices or their inverses if they
exist. If an inverse, it must have an INVERSE attribute set to TRUE. For example, the inverse
relationship matrix harvey.ai would need to have an inverse attribute set manually:

attr(harvey.ai, "INVERSE") <- TRUE

unless it was constructed from a pedigree file using ainverse() in which case an "INVERSE"=TRUE

attribute would be automatically set:

22

4.3 Methods and functions

harvey.ai <- ainverse(harvey.ped)

The vm() function includes known singular cases. For example:

Pedigree file example

A data set originally distributed by Walt Harvey

Calf Sire Dam Line AgeOfDam Y1 Y2 Y3

101 Sire_1 0 1 3 192 390 224

102 Sire_1 0 1 3 154 403 265

103 Sire_1 0 1 4 185 432 241

104 Sire_1 0 1 4 183 457 225

harvey.ped <- read.table("harvey.ped", header=TRUE, as.is=TRUE)

harvey <- asr.read.table("harvey.dat", header=TRUE)

harvey.ai <- ainverse(harvey.ped)

adg0.asr <- asreml(y3 ~1, random = ~vm(Calf,harvey.ai),data=harvey)

4.3 Methods and functions

meff() Link a relationship matrix to the regressor variables.

One use of a relationship matrix is to allow more computationally efficient fitting of random
regression models associating a vector u of p factor effects with a vector v of m regression
effects through the model u = Mv, where the p×m matrix M contains m regressor variables
for each of the p levels of the factor. If m� p, it is more computationally efficient to fit the
model with Zu and a variance structure for u based on K = MM ′, where Z is the design
matrix linking observations to factor levels, than a model fitting the regressor effects directly.
A common case of such a situation is in genomic studies when u represents genotype effects
and M is the p×m matrix of genetic marker scores.

The matrixK is constructed externally to the asreml() function call and used in the analysis
with the vm() model function. K must have a dimnames attribute giving the levels of the
model term defined in vm(). The marker (or regressor) effects can be obtained from the
meff.asreml() method. For example:

K <- M%*%t(M)

nassau.asr <- asreml(ht6 ~ CultureID/Rep,

random = ~ vm(clonefv,K) + ide(clonefv) +

Rep:IncBlock, ...)

nassau.mef <- meff(nassau.asr, mef=list(K="M"), effects = ~vm(clonefv, K))

fits such a model and estimates the marker effects given that the matrix K is in the R object
K and the original p×m matrix of marker scores is in the R object M. The reason for quoting
the name ”M” is so that when R is passing the arguments through to the meff function it will
not evaluate the object (which is typically large), as this will cause issues with memory and
speed.

The meff() method is not to be confused with the mef argument to asreml() that accepts
the return value of the meff method.

23

4.3 Methods and functions

lrt() Calculates the likelihood ratio test for fitted models.

vpc.char() Returns a vector of variance parameter constraint codes (P, U, F, B, ...) corresponding
to the numeric values returned in the vparameters.com component of the asreml object, see
example under vpredict().

vpredict() Compute functions of variance components and their approximate standard errors.

Functions of variance components and their standard errors can be obtained from the vpredict()
function. As the variance parameter names can sometimes be long or unwieldy, the variance
parameters are represented in vpredict() by the strings "V1", "V2",. . . in the order in
which they appear in the vparameters component of the asreml object. For example:

coop <- asreml.read.table("coop.dat", header=TRUE)

head(coop)

ywt0.sv <- asreml(cbind(ywt,fat) ~ trait + trait:age + trait:con(Brr) + trait:Sex + trait:Sex:age,

random = ~us(trait):id(Sire), sparse = ~trait:Grp,

residual = ~id(units):us(trait), data=coop, start.values=TRUE)

ywt0.sv <- ywt0.sv$vparameters.table

ywt0.sv[,’Value’] <- c(1.4, 0.13, 0.03, 1, 23, 2.5, 1.6)

ywt0.sv

ywt.asr <- asreml(cbind(ywt,fat) ~ trait + trait:age + trait:con(Brr) + trait:Sex + trait:Sex:age,

random = ~us(trait):id(Sire), sparse = ~trait:Grp,

residual = ~id(units):us(trait), data=coop, G.param=ywt0.sv, R.param=ywt0.sv)

ywt.asr$vparameters

#trait:Sire!trait_ywt:ywt trait:Sire!trait_fat:ywt trait:Sire!trait_fat:fat

#1.45821148 0.13027963 0.03443794

#units:trait(R) units:trait!trait_ywt:ywt units:trait!trait_fat:ywt

#1.00000000 23.20554057 2.50401740

#units:trait!trait_fat:fat

#1.66291555

#the variance parameter single character constraint codes

vpc.char(ywt.asr)

#trait:Sire!trait_ywt:ywt trait:Sire!trait_fat:ywt trait:Sire!trait_fat:fat

"U" "U" "U"

units:trait(R) units:trait!trait_ywt:ywt units:trait!trait_fat:ywt

"F" "U" "U"

#units:trait!trait_fat:fat

"U"

ywt.vp <- cbind.data.frame(names(ywt.asr$vparameters),vpc.char(ywt.asr),

1:length(ywt.asr$vparameters.type))

names(ywt.vp) <- c("names", "constraint", "number");ywt.vp

ywt.vp

#names constraint number

#trait:Sire!trait_ywt:ywt trait:Sire!trait_ywt:ywt U 1

#trait:Sire!trait_fat:ywt trait:Sire!trait_fat:ywt U 2

#trait:Sire!trait_fat:fat trait:Sire!trait_fat:fat U 3

#units:trait(R) units:trait(R) F 4

#units:trait!trait_ywt:ywt units:trait!trait_ywt:ywt U 5

#units:trait!trait_fat:ywt units:trait!trait_fat:ywt U 6

#units:trait!trait_fat:fat units:trait!trait_fat:fat U 7

24

4.3 Methods and functions

heritA 4*V1 / (V1 + V5)

vpredict(ywt.asr, hA ~4*V1 / (V1 + V5))

#Estimate SE

#hA 0.2364947 0.06117935

heritB 4*V3 / (V3 + V7)

vpredict(ywt.asr, heritB ~4*V3 / (V3 + V7))

#Estimate SE

#heritB 0.08115678 0.03936332

genetic corr

vpredict(ywt.asr, gc ~V2 / sqrt((V1 * V3)))

#Estimate SE

#gc 0.5813634 0.2038863

phenotypic corr

vpredict(ywt.asr, pc ~(V2 + V6) / sqrt(((V1+V5) * (V3+V7))))

#Estimate SE

#pc 0.4071449 0.01832069

25

Bibliography

Butler, D. G., Cullis, B. R., Gilmour, A. R. and Gogel, B. J. (2009). Asreml-r reference manual,
version 3., Queensland Department of Primary Industries . Brisbane: Queensland Department
of Primary Industries.

26

	Preface
	List of Tables
	Getting started
	ASReml-R Version 4.1
	Installation and loading
	The asreml license

	What's been replaced in ASReml-R Version 4
	What's changed in ASReml-R Version 4
	Specification of the linear mixed model
	rcov becomes residual
	Switching between the gamma and sigma parameterization

	asreml() arguments
	The asreml object
	Screen output
	Mixed model functions
	Methods and functions
	Lists

	What's new in ASReml-R Version 4
	asreml() arguments
	Mixed model functions
	Methods and functions

	Bibliography

